Бесплатно по Украине
0
Корзина пуста
Открыть корзину

Электрическое сопротивление человеческого тела

Все мы знаем, как может быть опасен ток. Наше тело, к сожалению, довольно неплохой проводник, и в некоторых обстоятельствах оно может стать звеном электрической цепи, вызвав опасность для здоровья. Сегодня мы поговорим о том, какова электропроводимость живой ткани, как и по каким причинам она может изменяться и что произойдёт с организмом в этих случаях.

Если случится так, что человек попадёт под воздействие напряжения, величина силы электрического тока в разных условиях будет отличаться. Причиной тому выступает сопротивление нашего тела, которое является не фиксированной величиной, а зависящей от рода ткани, точки приложения провода или кабеля под напряжением, возраста человека, его веса, пола и даже настроения. Безусловно, накладывают отпечаток и условия внешней среды: влажность воздуха, температура окружения, атмосферное давление и наличие разных видов волн в области воздействия.

 

 Точки чувствительности организма к току

 

Тело против электротока

Пожалуй, наиболее очевидное и значимое влияние на итог поражения оказывает вид ткани, через которую будет проходить ток. Каждый её участок имеет различное строение и претерпевает весьма непохожие комплексы биофизических процессов, влияющих на проводимость. Согласно результатам исследований учёных, фундаментальный вклад в увеличение суммарного электрического сопротивления тела вносит опорно-двигательный аппарат. Кости, хрящи и сухожилия могут обладать сопротивлением в 3-20 кОм/м, что достаточно много в сравнении с другими системами. К примеру, жировая ткань и органы уже имеют значение около 1,5-3 кОм/м, а мозг, мышцы, кровь и лимфа – вообще на два порядка меньше, всего лишь 0,5-1,5 Ом/м. При этом в инженерных расчётах всегда в первую очередь используется проводимость кожи – наружного слоя эпидермиса. Наиболее вероятно, что прикосновение к токоведущим участкам произойдёт пальцами рук, так что в зависимости от того, сухие ладони или влажные, тёплые они или холодные, итог будет кардинально отличаться.

Структура кожи человека чрезвычайно сложна и неоднородна. Каждый основной слой содержит в себе подслои, которые определяют проводимость всего покрова. К примеру, тот же эпидермис включает в себя роговой слой, на который нам и приходится полагаться при взаимодействии с электротоком, поскольку он не содержит ни кровеносных сосудов, ни нервов, ни других непосредственно проводящих сигналы структурных элементов, а также ряд внутренних подслоёв, у которых сопротивление в разы меньше. Сразу следом за эпидермисом идёт дерма – слой с очень малым сопротивлением, который непосредственно переходит в другие системы организма. Таким образом, определяющими в данном контексте будут именно свойства наиболее «бронированного» рогового слоя.

Состояние кожных покровов также имеет колоссальное значение. Если Вас хотя бы несколько раз в жизни при разных обстоятельствах настигал разряд статического электричества, то, скорее всего, Вы успели отметить, насколько различаются ощущения, когда удар приходится на ровный участок кожи, на ноготь или на порез. Наилучшие изоляционные свойства имеет чистая сухая кожа без повреждений – её электрическое сопротивление обычно оценивается в диапазоне 10-100 кОм. В случае появления на ней царапин, травм, порезов до более глубоких слоёв, данная величина может быть снижена в 2-10 раз, поскольку фактическое сопротивление уже будет определяться внутренними тканями, а не роговым слоем эпидермиса. Влажная кожа, как многие понимают, наоборот, обладает повышенной проводимостью из-за тонкой плёнки жидкости, а площадь контакта в подобной ситуации возрастает. Грязные руки тоже сильно увеличивают шансы на то, что поражение будет серьёзным: они создают островную проводимость с весьма непредсказуемым профилем и фактически формируют огромное множество точек контакта тела и проводника под напряжением. Последняя ситуация условно сравнима с кедами футболистов: за счёт наличия шипов сцепление с поверхностью заметно выше, то есть контакт лучше, что в рассматриваемых обстоятельствах плохо.

В инженерных расчётах, особенно для проектирования технически верных условий труда человека, совокупное сопротивление тела представляют в виде трёх последовательно соединённых сопротивлений: слой эпидермиса, дерма с внутренними тканями и ещё один слой эпидермиса. За счёт того, что внутренние органы имеют очень высокую проводимость, их вклад в задачу защиты оказывается минимален, то есть вся ответственность ложится именно на наружные слои. В определённом смысле это хорошо, поскольку человек вряд ли смог бы научиться направленно управлять внутренними процессами, в то время, как защитить внешние покровы ему вполне под силу.

Как уже было сказано ранее, огромное значение имеет и то, о каком участке кожи идёт речь. Чаще всего в розетку попадают пальцы рук, и на них уровень сопротивления в сравнении с общим довольно высок. При этом уже тыльная сторона ладони гораздо более уязвима, поскольку кожа там заметно тоньше. Наряду с ней самым маленьким сопротивлением обладают другие нежные участки – шея, лицо, паховая область, подмышки, середина стопы, где нет утолщения тканей от постоянного хождения. Вместе с тем, все указанные здесь сведения считаются оценочно-прогностическими, ведь в реальной ситуации будут иметь огромное значение и сопровождающие факторы.

Известно, что у мужчин сопротивление тела выше, чем у женщин, поскольку их кожа толще и грубее. По тем же причинам, а также в силу превосходства по весу, взрослые люди чуть больше защищены, чем дети. Психологическое состояние также оказывает некоторое влияние посредством воздействия на физиологические процессы: известно, что человек в хорошем настроении менее уязвим, чем в подавленном или уставшем. Вдобавок, изменить сопротивление могут и внешние раздражители: если человека ударить, испугать, ослепить ярким светом лампочки или оглушить громким резким звуком, проводимость его тела начнёт меняться в реальном времени, снижаясь на 20-50% всего за пару минут. Когда раздражитель наконец исчезнет, а нервная система сделает вывод, что жизни ничего не угрожает, сопротивление тела снова нормализуется.

 

 Опасность прикосновения к электроприборам

 

Для учёных одним из самых важных и интересных аспектов при изучении подобных вопросов является то, что функция изменения собственного сопротивления тела нелинейна. Таким образом, её возможно предсказать до определённой степени, но для того, чтобы точно оценить, придётся изучить несколько десятков факторов. Если высокая точность не требуется, в расчётах сопротивление тела человека принимают равным 1000 Ом. Но всегда остаётся актуальным, о каком напряжении идёт речь при рассмотрении возможного случая поражения электротоком. Важен не только сам вольтаж, но и условия: обувь и материал подошвы, поверхность пола и её характеристики, наличие заземления и пр. С учётом этих данных ток будет определяться не только сопротивлением организма, но и схемой его включения в электрическую цепь.

В быту речь зачастую идёт о касании к однофазной сети. Чаще всего это происходит в моменты включения вилок питания приборов в розетки или манипуляциях с распределительным щитком. Человек обычно просто стоит на полу и прикасается к токопроводящей части одной точкой-конечностью. В данной ситуации через тело будет течь ток замыкания на землю, а путь его будет самым коротким: от руки к ногам через туловище и жизненно важные органы в нём. Сопротивлением выступит как само тело, так и одежда на человеке, его обувь, возможная опора и пр. Чаще всего доминирующее влияние оказывает связка подошва-пол. Для сравнения используем чистую математику: кожаная подошва домашних тапочек или огрубевшая оголённая кожа самого человека в сухом состоянии могут продемонстрировать сопротивление в 100 кОм, в то время, как в присутствии влаги значение для тех же поверхностей составит 500 Ом. Резиновая подошва на сухом полу обеспечит 500 кОм, а на влажном – 1,5 кОм. На металлическом полу результат будет математически противоположный, но в целом итог один: сухой металл имеет бесконечную проводимость с сопротивлением в пределах погрешности, а влажный формально обеспечит «защиту» в 10 Ом. Контактируя с проводами на сухой земле, можно рассчитывать на сопротивление в 20 кОм, а на влажной – лишь на 800 Ом. Лучше всего в быту себя показывает линолеум: будучи сухим, он имеет огромное сопротивление в 1,5 МОм, и даже во влажном состоянии обеспечивает целых 50 кОм. В подавляющем большинстве случаев именно сопротивление опоры и обуви спасают человеческую жизнь, а не собственная низкая проводимость тела. Конечно же, играет роль и защитная автоматика, но только в том случае, если она исправна и верно укомплектована.

Прикосновение к двум фазам на практике встречается намного реже и является своеобразной прерогативой электриков и электромонтажников. В таких случаях человек разными руками или рукой и ногой касается разных проводников трёхфазной сети, стоя на каком-либо основании. Основная опасность здесь в том, что токи потекут через внутренние органы, в том числе, через сердце. Ввиду специфики ситуации, с подобным столкнуться можно только при монтаже электрических агрегатов, но вряд ли человеку, который занимается подобными работами, придёт в голову сознательно касаться двух фаз: зачастую первой точкой контакта является рабочая рука, а второй – случайный участок тела через одежду. Если она сухая, её сопротивление составит 10-15 кОм, а если влажная – всего 500-1500 Ом. Важно обратить внимание, что при прикосновении к двум разным фазам нет никакого смысла учитывать сопротивление подошвы и пола, поскольку ток течёт по телу именно между фазными проводниками. В сухой одежде всё ещё можно отделаться неприятным дрожанием рук, от которого достаточно легко избавиться, отпустив провода, а в сырой самостоятельно оторвать конечности даже от плоской токопроводящей поверхности может быть проблематично.

В свете всего вышесказанного следует задуматься о том, насколько важно заземление. Если человек вдруг прикоснётся к кожуху агрегата на производстве или электрочайнику с пробоем на корпус в быту, и заземления не будет, весь ток потечёт через тело. Если же будут использованы розетки с заземлением, доминирующая часть тока уйдёт в землю, а через организм пройдёт лишь малая толика, представляющая минимальную угрозу для здоровья.

Отдельный вид опасности представляет собой шаговое напряжение. Оно может возникнуть, если случился обрыв высоковольтного провода и он теперь лежит прямо на земле; если фазная жила оказалась закорочена на металлический корпус уличного фонарного столба, вблизи которого идёт человек; если люди стоят на грунте рядом с местом закопанной рамки заземления. Во всех этих ситуациях по наружной поверхности земли проходит ток, который может потечь и через ноги прохожих. В подобной ситуации образуется цепь грунт-нога-нога-грунт, а сопротивление движению тока оказывает лишь часть тела, элементы одежды и обуви. Контакт подошвы и основания играет столь же значительную роль, как и ширина шага, а потому в большинстве таких случаев итог будет зависеть от того, был грунт влажным или нет.

Печальный опыт многих электриков показывает, что в конечном итоге на сопротивлении тела сказывается целый комплекс факторов, а не один-два. К примеру, сухие руки без повреждений эпителия под воздействием тока могут резко начать потеть, что только ухудшит ситуацию. Кроме того, термическое воздействие тока на кожу провоцирует её нагрев, а животные ткани при более высокой температуре и так лучше проводят электричество. Наконец, тонкие участки кожи при длительном поражении начинают лопаться и у тока появляется доступ к более глубоким слоям, которые имеют низкое сопротивление. Как видим, человеческий организм устроен таким образом, что продолжительность контакта с токоведущими объектами провоцирует только усугубление ситуации. Поэтому очень важно всеми силами постараться оторвать конечность от источника тока поскорее – как только было обнаружено касание. Ещё правильнее, конечно, использовать диэлектрические перчатки и спецодежду при работе, но место для случайных событий, к сожалению, всегда остаётся.